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Phase transitions are not only characterized by singularities in
thermodynamic derivatives, but also by peculi‘arities in the time-dependent
behavior of the system. By employing a time-dependent generallzation of the
Ising model and a master equation, the relaxation of a local deviation from
equilibrium for a system near its critical temperature, is described.
Approximate solution of the equatiocns yield results in agreement with recent
optical expéfiments, in which the decay of concentration fluctuations in
critical mixtures of liquids is measured; results are also consistent with
N.M.R. measurements in anti-fef-romaguets. If the equatioiis are solved more "
accurately, however, it 1s found that the decay of a local displacerent from ¢
equilibrium concentration in the critical region is in general not describable

by a single exponential.
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INTRODUCTION

The Ising model 1s best-known as a simple many-body Hamiltonian,
which if inserted into the partition function, leads to a description
of the critical behavior of various physical systems: Ferromagnets,
anti-ferr-omagqets, liquid-vapor systems, binary liquid mixtures, binary
alloys. For the two-dimensional Ising model, the partition function
)

can be evaluated exactlyl ; while for the three-dimensional Ising

2) There

model only approximate and series expansion methods exist.
may thus be two types of approximations involved in applying the Ising
model, viz. a) the replacement of the physical Hamiltoniam by the
model Hamlltonian, and b) approximations made (if any) in evaluating the
partition function.

The only undetemﬁned. pararmeter in the theory is the lattice
spacing. The exact two-dimensional calculation is particularly significant,
3)

because it verifies the notion that a phase transition and critical
behavior can be rigorously derived from the Hamiltonlan of a many-body
system via the partition function and equilibrium statistical mechanics.
Recently reported experiments yield quéntifative information about the
rate at which fluctuations near the critical point decay. Such experiments
have been carried out in binary liquid mixtures,u) in anti-ferromagnetic

6)

SOli.dSS), in liquid-vapor systems™’ and in fferromagnetsj) Most of the

exper'inents8)

show very slow decay rates near the critical point, roughtly
proportional to ( T - Tc), as the critical temperature is approached from
above. Not unrelated is the well-known experimental fact, that near T c
most systems seem to take a very long time to come to thermal equilibrium.
A simple phenomenological theory, based on the diffusion equation, has been
given for the binary liquid experiments by Debye.g) Phenomenological

theorles also exist for the other experiments rrentioned.m) 11) 8)



These theories are consistent with most of the experimental results.a)

The purpose of the present paper is to formulate a theory of the

L
relaxation of a generalized Ising model liamiltonian 12) 13) 14)

,which
can be applied to the description of time-de¢pendent phenomena,in the
critical region. It will be applied, for the sake of being explicit
and specific, to concentration-fluctuations of a binary liquid mixture,
for which the liquids are completely miscible above Tc, but not below T o
Such a theory is very different from a phenomenological theory because
a) it begins with ar explicit nrlscroécopic description of the system
and b) instead of ;e near-equilibrium, slowly-varying and lineai'ity
assumptions of the prienomenologlcal theories, rather different assumptions
are made. The assuptions of the phenomenological theories would not be
expected to be valid for short wave-length, i.e. large scattering angle,
while this limitation does not appear in the present formulation. A more
important difference is that according to the present formulation, the
rigorous calculation of relaxation times near and also below Tc would
depend on higher order correlation functions, which are igriored from the
outscet in the phenomenological theories.

| The chief reason for pursuing the ising~model approach is that
one would like to obtain results based on a detailed microscopic picture.
The approximations entering into the theory may be seen against the back-
drop of the assumptions entering into the use of the Ising model in
equilibrium statistical mechanics. The approximations and assumptiors we
shall make, are: a) the replacement of the physical Hamiltonian by a model

: 1 !
Hamiltonian, b) the use of a master equatior;‘g) 1)

to calculate the
prcbability that the system is in a particuliar state, and c¢) approximations
in solving the master equation. The different states, whose cccupation

probabilities emerge from the master equation, are the eigenstates of an



Ising model Hamiltonian. The transition probabilities between states
enter as a parameter, which may be a function of terfperature. In order
to make the physical model complete, we obtain the temperature dependence
of this parameter from simple arguments based on kinetics of collisions.
TIME~DEPENDENT ISING MODEL

The model to be used for the binary liquid mixture is the following:
Consider a lattice with n sites, each of which is occupied by either a
molecule of type A or one of type B. Let m = +1 or -1 according to
whether the site i1 is occupled by type A molecule or by type B. The
"system of Interest" S is the Ising model interaction of these molecules

plus the thermal average energy E3 of independent molecules.
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where § refers to nearest neighbors. The thermal environment consists of a
large nunber N of other interacting molecules of types A and B, where

NS> n»S> l)and all kinetic energles of molecules not contained in (1).
The system S and the environment interchange particles via an explicit inter-
action Hamiltonian. In a model for a ferromagnet the same Hamiltonlan and
model could be used, except that the synbols have a different well-known
physical interpretation. This is also true for the one-component lattice

gas model for the liquid-gas transition. For the antiferromagnet only the
sign of J need be reversed. We shall for the sake of definiteness always
have in mind the bilnary liquid case.

1h)

In a previous paper, a master equation for an Ising system was

derived. 15) The equation for the probability distribution P(m) describing

the system S, adapted to the binary liquid, is:

w £
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where P(m) = P(m,( 1., ....mn, t) is the time depordent probabiiity that

the system S is in the state|m) = \m.J m, ....mn> s simiiarsy

P(rﬂ,-j , -mJ.) is the probabllity of the stere|m,, -!3.17 which differs

from |m> only in that the type of mulecule oceupying ¢h- site j has
-

changed. In (2) G‘-‘ %T) and W =3.m1. (%T Mg "'l)

4’ = Mpa~ Mg t &T&?%

where M p 1s the chemical potential, and G  the ron-confiruratlona®

with

partition function of an A molecule  (In the ferromagnctic problem
'7 = Y H, where H is the magnetic ficlid). The quantiiy f{w) has the

property

@) Llw) = £(-w)

and may ve regarded either as a transition probability per unii time, o

as a spectral dencity characterizing the thermal reservoir. It is noted
that (2) is specialized also in that only transitions in which the occuration
of one site is changed at a time are conslidered; thus transitions in which an
A and a B molecule within S exchange places, or rearrangements .'nvolving the
chanpge of many of the m(j simultaneousiy are not included in (2). However
the effects of such processes will be discussed also.

Another feature of (2) is that the function f(w) is assumed independent
of j, so that all n sites of S are treated as equivalent, regardiess of
whether the site lies on the surface or in {he interior of the region S.

This assumption is strictly true if S is arranged in a two-dimensional
sheet with periodic boundary conditions, but is at best only a useful
approximation for other geometries. For the sake of clarity we shall
regard the present formulation as a theory for the relaxation of the two-

dimensicnal Ising model.



Further’VI will be put equal to zevo, implying <Nar7 = < N3>)
which is just the critical mixture of A and B molecules, according to
the Ising model.

APPROXIMATE SOLUTIONS

While one can give the exact formal solution of (2), the explicit
evaluation of the formal solution appears to be very complicated.
Here we sive only two types of simple approximate solutions for the
first moment: First a solution in the molecular field approximatior

and secondly a solution obtained as an expansion in powers of tanh J§

From (2) and (3) one has'3 1% the equation for{m ) Zm Plm, t)
oA m; > w o
y g4 () i

The molecular field approximation consists of replacing m for

22
(# 5.) (%) ("3 M= <V‘\5>. Pertinent features of this approximation
are: (1) It can give only the relaxation of the uniform mode, because of
the <w\5> = < W\2> assumption. (ii) Had processes consisting of exchange
of position among molecules within S, been included in (1), they would not
have contributed to the relaxation anyway. (iii) The approximation is

not restricted to any particular temperature range. Let ¢ = § ,3“‘1 , where &

is the mmberf'j_of nearest neighbors. Then (4) becomes

As
which corresponds to critical behavior at T = Tc = w . Thus for a

critical mixture of the two liquids (4l = 0) the relaxation rate
1s according to (5) proportional to [ M- +ard @XIJ'IM] . It is

seen from Fig. (1) that this quantity becomes extremely small near
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T= 'E . especially for small values of M corresponding to the long
decay times (narrow line) observed in the experiment. For T T, and
small M, the decay is according to (5) exponential (and the line
Lorentzian) with decay time 4/{ ~ (T"Tc)-l , & -C@)
remains finite at the critical temperature. The well-known slowness of the
approach to equilibrium in the neighborhood of the critical point 1is
seen to follow already from the detailed balancing condition implicit in
(2). In the experiments 4 6)one does not usually observe the relaxation
of the uniform ( Z:o ) mode, but rather that of long but finite wave-
lengths. The data does however indicate alorentzien line shape and
extreme narrowing for scattered radiation for sufficlently smallf as
T — Tc from above, apparently consistent with (5). However, as will be
shown later on, the long relaxation times are not to be ascribed to the
detailed balancing condition alone, but also to the temperature dependence
of the L ().

We now proceed to solution of (2) by a different approximation, expansion
in powers of o = tanh B|J \ . Features of this approximation are:
( { ) The relaxation of a standing concentration wave with arbitrary wave
vector can be evaluated. ( ({ ) The approximation is best for high tenper-—
atures. Since there exists a small expansion parameter, it is a systematic
expansion. Note however that @ < even at the critical point. ( (Cv )
"Exchange" processes do effect the solution. Further in (2)_, the quantity f(wj)
will be approximated by f(0) independent of the mj. The physical meaning of this
step is the following: f(wj) is a transition probability per unit time, and can
be written as a spectral density of a correlation function of variables
involving the heat bath coordinates only. In particular they involve the
molecular velocities. If the correlation times which characterize the

-1
functions of wvelocities are short compared to [X \Tﬂ then indeed
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Then (4) becomes

3 44

The equations for higher moment can be ob'ca.ined:L 3) 14) from (2]

d /7 C T (-

1) 2| = - T-/‘W \ ’W‘ W\c

( ) d.{__<t= > /\<( Lh)'d-}.;‘ 1.(: h*6)>
Here the Q—‘ )q,L . e ?,r designate a particular set of

L
lattice sites. Dropping all terms in (6) which are of order &

and introducing  m (L) Z e“"d

(8) a\;r/l»: —A(wibf“ Y(r)e)  + 6 (a)

where K(E) = 5 Q‘g L A Fourter component with wave vector k
4
will decay with relaxation time

3

d yields for c\q’Lcl

\ L= ¥(2)a)

(9a) i) -

For long wavelength 1661 « one has

- b
\ - - < e
(9p) _‘—C—U-:) = ALl-¥a] A%@ )
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- bed
the quadratic dependence of Et (4)) R 4 implies that for

light scattered through an angle © , the scattered line is broadenedg)
proportionally to <Si h"'_g , in agreement with experiments for small

angle scattering.”’ ©) e uniform mode ({~6,#29 relaxation time
becomes infinite according to (9b) at €a=| . This point is somewhat
above the exact (Onsager) critical point. Presumably if the coupled
equations (6) and (7) were solved to all orders in a , the singular
point would be the exact critical point. When (6) and (7) are solved

to higher orderl6)

then linearly in a , one obtains a decay in
as a sum of exponential terms, only some of the relaxation times will
become infinite at the critical point, while others remain finite.

PHYSICAL INTERPRETATION

The quantity <M J') =h§- M ‘\,8 , 1s the difference between the expected
nurber of A molecules at site jJ and the expected number of B molecules.
Since 'thS@';'l , one also has (MP? |-2m§=2njn'l . This measure of
concentration is expanded in a Fourler series, yielding independently
decaying Fourier components to first order in & according to (9);
however the terms o a* couple the different Fourier components. -
Now we must consider the tenperature dependence of the parameter ')\
or rather the transition probability per unit time (o) , in order to
have a conmplete model of the critical behavior. If the transition
between states |my and | W} ,-w)are due a perturbation Hamiltonian of the
simple and plausible form /)*C\; = (%' O‘f + c«j (5‘J.’ ) )

where the b 5 is an operator containing the variables of only the

environment (i.e. not those of the System S), and O:‘),i = o:jy 3 io‘:).‘*’)
14) \9)
then if D), =
{a P@ »,
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whére £ >6 means thermal average. The operator qx can depend on
all velocities and on the arrangement of molecules in the environment.
Suppose G { can be written as a product G §= X G

where cA depends on the arrangement of A and B molecules in the
neighborhood of 5 ) and % depends on velocities of molecules in that
neighborhood. Further we take @& and % to be statistically in-
dependent, and the correlation time for g to be much shorter than that

for the oL , Then _
kA NG
(11) Cly =T L\ 7(5 J_mécﬁ“ )%m){sdq

3

The process described by £{(0) he \‘“‘é ')'l\‘; namely the replacement

)
of a A molecule at site j by a B molecule from the environment is the

less likely, the fewer the B molecules there are in the neighborhood.
Suppose that in the binary liquid clusters ("drops") of A and B are

formed of average radius VS where § is the lattice spacing, and the
rate at which a molecules jumps from one site to the next is C. Then the
A molecule will on the average have to travel a net distance of the

order of ’VS. to replace a B molecule, which according to the
elementary theory of the random walk requires on the average vt steps
or traveling a total distance 'v‘g .Consequently the transition rate

for the process in question has besides the wvelocity dependence a factor

-2
<ld\l0)‘7'>6 ~ S (V§) s The distance Y8 can be evaluated

from the correlation function for the equilibrium Ising model 18)

12 -x$|i-£

e mim, > & € ,.“ | Koo Lems® -
$13 -2 ’ X -

Where X = ( 9<”"j>) is the analog of the magnetic
M0

&y P =
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susceptibility for a binary liguid mixture. (11) becomes
1
L) = w;zf ] G0 gydt

To be even more explicit one myy take z to be a Taylor series in

velocities, and keep the leading (dinear) term. Presumably a process
involving only two molecules (one type A molecule and one B molecule) depends
primarily on the resuliing velocity correlation function, rather than those
containing products of three or more velocities. In fact the correlation
between an A velocity and a B wveloclty is what is important. For our
purposes, it is sufficient to require that f _:< 4 (’L\%Lo))ed T

is a slowly varying function of temperature, and finite near T o

5

However for the Ising model X~ ! ;__—_-;‘_-) Const (T-Tc_)
<

The relaxation time (9b) may then be written as

I T R N (0
an ) - 7CD ]+7< L

where A 1s a slowly varying function of T near Tec.
According to (14), T (L ) bas the same singular behavior as ")C
in the critical region, except that for‘&-— 0, it diverges still more
rapidly. Again (14) is consistent with present experiments,

In order to see the relation of the present model to the theory

of Debyeg) based on the diffusion equation, retain only the linear term
in (6)

0!<WIJ>
A+

(15) A; ZEO"HP <mdﬂ-+‘;[6a 1] {mi>

which 1s a finite difference equation corresponding to the diffusion

equation
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a_L__T.) = DNELm> — <
(16) ot .
with D = v~ Ra ¢ and T7'= XA (- Ta)

The ("‘7/1(_ term is absent in the Debye 'creatmentg) . The expression for the
diffusion constant is usually ob’cainedlg) in a formal way from the theory
ALY

2N =0

arises from the changing of variables from the thermodynamic force ryl

of linear irreversible processes; in particular the factor )‘ =
to the varizdle £ M) , Horeover ir ths linear theory Aas®
becomes precisely a velocity-correlation function.

We have not considered the possible mechanism of an A and B molecule
within S exchanging pleces. If consider sueh processes must add to the
rignht-hand side of (2) the terms

an 2 >‘42 My -y [ (”"‘Je,“”wr'"e)
The Kronecker delta assures that the two sites (j, £ have a different

- Bl e

VIQ

“\J‘ ‘H\){

Al

occupation, so that the process can take place.Cornseguertly the clustering
tendency is explicitly taken into accountt, and the )\ d'z will not

= 3 (=mgm, )

varitsh at the critical point. Using the relation g N
ARN 4
one can again find moment equations.

The equation for the first moment is

d ¢ -
06 A~ - 2aghy T Ny g (MMl €

‘Bi(""’ms ~g) >
¢
- 2einhag)s %)Ufa« LM Moy ~ML) %

8. ( .
© 23 gy Qraoma e BT

Ll *‘*"MA))

where L+h  andd w4 wiepy = Wt Wiy~ 43 Mgy
At high tenperatures, ,@H\'l <l

yields simple diffusion terms. But already to first order in &

the right hand side of (18)

)
contributions to doTémD arise which depend on correlation

between three sites. In particular the second term in (18), which involves
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an interchange between sites A and ¥/ +$ ,but not a direct
exchange with 42 itself (unless £ +3=4 ) will
contribute,

CONCLUDING COMMENTS

To summarize, we have attempted to give a simple microscopic model
for the relaxation of concentrations near the critical point in a binary
liquid mixture. Transition probabilities between states are taken to
be independent of the mJ s €xcept for the dependence required by detailed
balancing. If consider processes for which only the occupation of one
site in S is changed then from this condition alone follows that the k = 0
mode has an infinite relaxation time at T = TC, and inverse relaxation
times for small finite & vary as kz(equations 9). Further consideration
of the dependence of the transition probability on the tendency of each
molecule to surround itself with molecules of its own type near T o)
leads to (14), indicating a vanishing of Q((i.)] ™! for all k at the critical
point, to first order in tanh gm .In the same approximation a
diffusion equation is obtained; Asuch a diffusion equatior(without however
the relaxation term)is the starting point of Debye's phenomenological
theory. However already to order (tanh Q,I )2 it 1is not sufficient
to deal only with (6) or a diffusion equajfion, but the coupling to some of
the equations (7) for higher order correlation functions must be considered;
to put it differently, the Fourier components <an R)Z: no longer relax
independently of each other at the lower temperatures.

For processes consisting of the exchange of location of an A and a B
molecule within S, we find that the diffusion model already breaks down to
first order in tanh’b‘] . It 1s concelvable that still more complicated
processes Involving two, three or more sites within S contribute to the

relaxation. We have‘ not considered such processes.
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It was already noted that the single relaxation time for wil)at small a
goes over into several relaxation times when terms of order & (or even ot
order «_according to (18) ) are considered: QY\(Z)); gﬂ} e—-t/w‘(r/.
Now the As are linear combination of suitably averaged initial values
of the various moments. Only some of the '¢; will vanish at the
critical point, the others remaining finite. Which of the relaxation
times dominates in the critical reglon will depend on the state of the
system at €=0, Of the whole spectrum of relaxation times contained in
the master equation, certain ones may dominate the relaxation of ZM <m;d,
Another set may dominate the relaxation of particular highforder correlation
functions. These points are mentioned, because the possibility suggests
itself that the observed vanishing of [X( i'?)]-| asT»T, in many experiments
4) 5) 6) might thus be reconciled with the non-vanishing EI:(E)]" found
in femnagxetsz)
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